A noncatalytic function of the ligation complex during nonhomologous end joining

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A noncatalytic function of the ligation complex during nonhomologous end joining

Nonhomologous end joining is the primary deoxyribonucleic acid (DNA) double-strand break repair pathway in multicellular eukaryotes. To initiate repair, Ku binds DNA ends and recruits the DNA-dependent protein kinase (DNA-PK) catalytic subunit (DNA-PKcs) forming the holoenzyme. Early end synapsis is associated with kinase autophosphorylation. The XRCC4 (X4)-DNA Ligase IV (LIG4) complex (X4LIG4)...

متن کامل

The fidelity of the ligation step determines how ends are resolved during Nonhomologous end joining

Nonhomologous end joining (NHEJ) can effectively resolve chromosome breaks despite diverse end structures; however, it is unclear how the steps employed for resolution are determined. We sought to address this question by analysing cellular NHEJ of ends with systematically mispaired and damaged termini. We show NHEJ is uniquely proficient at bypassing subtle terminal mispairs and radiomimetic d...

متن کامل

Differential phosphorylation of DNA-PKcs regulates the interplay between end-processing and end-ligation during nonhomologous end-joining.

Nonhomologous end-joining (NHEJ) is a major DNA double-strand break repair pathway that is conserved in eukaryotes. In vertebrates, NHEJ further acquires end-processing capacities (e.g., hairpin opening) in addition to direct end-ligation. The catalytic subunit of DNA-PK (DNA-PKcs) is a vertebrate-specific NHEJ factor that can be autophosphorylated or transphosphorylated by ATM kinase. Using a ...

متن کامل

Bridging of double-stranded breaks by the nonhomologous end-joining ligation complex is modulated by DNA end chemistry

The nonhomologous end-joining (NHEJ) pathway is the primary repair pathway for DNA double strand breaks (DSBs) in humans. Repair is mediated by a core complex of NHEJ factors that includes a ligase (DNA Ligase IV; L4) that relies on juxtaposition of 3΄ hydroxyl and 5΄ phosphate termini of the strand breaks for catalysis. However, chromosome breaks arising from biological sources often have diff...

متن کامل

Bacterial nonhomologous end joining requires teamwork.

All living organisms must repair DNA double-stranded breaks (DSBs) in order to survive. Many bacteria rely on nonhomologous end joining (NHEJ) when only a single copy of the genome is available and maintain NHEJ pathways with a minimum of two proteins. In this issue, Bhattarai and colleagues identify additional factors that can work together to aid in survival of stationary-phase cells with chr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Cell Biology

سال: 2013

ISSN: 1540-8140,0021-9525

DOI: 10.1083/jcb.201203128